skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alosious, Sobin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AbstractComputational methods and machine learning (ML) are reshaping materials science by accelerating their discovery, design, and optimization. Traditional approaches such as density functional theory and molecular dynamics have been instrumental in studying materials at the atomic level. However, their high computational cost and, in certain cases, limited accuracy can restrict the scope ofin silicoexploration. ML promises to accelerate material property prediction and design. However, in many areas, the volume and fidelity of the data are critical barriers. Active learning can reduce the reliance on large data sets, and simulation has emerged as a critical tool for generating data on the fly. Despite these advances, challenges remain, particularly in data quality, model interpretability, and bridging the gap between computational predictions and experimental validation. Future research should develop automated frameworks capable of designing and testing materials for specific applications, and integrating ML with traditional simulations and experiments can contribute to this goal. Graphic abstract 
    more » « less
    Free, publicly-accessible full text available October 1, 2026